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Abstract

The finite section method is a convenient tool for approximation of the inverse of certain operators
using finite-dimensional matrix techniques. In this paper we demonstrate that the method is very
useful in frame theory: it leads to an efficient approximation of the inverse frame operator and also
solves related computational problems in frame theory. In the case of a frame which is localized w.r.t.
an orthonormal basis we are able to estimate the rate of approximation. The results are applied to the
reproducing kernel frame appearing in the theory for shift-invariant spaces generated by a Riesz basis.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let H be a separable Hilbert space. A familg};> , of elements ir{ is aframefor H
if there exist constanta, B > 0 such that

AIFIPS Y I fPSBIFIPVS € H.
k=1
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Given a framg fi};2 ;, the frame operator

S:H—>H, Sf =) (f fi)f 1)

k=1

is bounded and invertible, and eaghe #H has the representation
[e¢)
f£=) (ST fi) feo )
k=1

see[4,6,15]. In order to use (2) in practice, we need efficient methods to invert the frame
operator. The problem of designing finite-dimensional models for approximating the inverse
frame operator leads to delicate questions of stability and convergence, cf. [5] and the
references cited therein. In this paper we demonstrate that the finite section method, when
applied properly, is very useful for this purpose.

We present the general results in Section 2. In Section 3 we apply our findings to two
important issues in the theory of shift-invariant spaces generated by a Riesz basis: namely,
inversion of the frame operator associated to the reproducing kernel frame, and reconstruc-
tion of a function from a set of sampling. Finally, in Section 4 we show that the finite
section method leads to better results in general frame theory than the Casazza—Christensen
method.

In the rest of this introduction we collect some basic facts concerning the finite section
method. Let{ f;}72 , be a frame for a separable Hilbert spa¢and{#,} > ; a family of
finite-dimensional subspaces&ffor which

H1CH2 S CSHy M H. 3)
Let P, denote the orthogonal projection &f onto #,,. Our purpose is to approximate a

bounded operatdr : H — H and its inverse. The basic definition, appearing in ¢19],
is as follows.

Definition 1.1. Let V : H — H be a bounded operator, and assume that for gaehN
we have given a bounded operai@r: H, — H,.

(i) The sequencéV,}>° ; is an approximation method for the operataf
VP f — Vf forn > coVf € H.

(ii) An approximation method is applicable if there existse N such that for allf € ‘H
the equation

Vox =P, f (4)
has a unique solutior, for all n >ng, andx,, converges to a solution of the equation
Vx=f.

(i) The sequencgV,}> , is stable if there exists, € N such that the operatofs, are
invertible on#,, for n >ng and

-1
sup |V, " Pyl < oo.
n=ng
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We need two results frofl0, Theorems 1.4, 1.17].

Lemma 1.2. An approximation metho@, }°° ; associated to an operator V is applicable
if and only if V is invertible andV,,}°>° , is stable.

Lemmal.2 implies that iff V,,}7° ; is applicable, theW is invertible and
VP f > VvifvreH.

Lemma 1.3. Assume that the approximation methdd,}>° , is stable. If{W,}>°; is a
sequence of operators for which

lim sup |W,, P, < lim inf |V, 1P, |72,
n—0o0

n—o0

then{V, + W,,}°°; is stable.

An example of an approximation method associate® tis the family of operators
{P,V P,};° 1, whereP, are orthogonal projections onto subspaggssatisfying (3). This
special type of approximation method is callefirgte section method.

Proposition 1.4. Assume that#,}°° ; is a sequence of closed subspace® cfatisfying
(3),and letP, be the orthogonal projection ontd,,. Then the finite section method applies
for an arbitrary positive definite operator V.

Proposition 1.4 is proved in [10, p. 32], for the case where there is an orthonormal basis
{ex}p2q for H such thatH, = spare};_,. The general case follows from here. We note
that for an arbitrary invertible operatdithere always exists an orthonormal basis such that
the finite section method applies. However, for practical purposes the pure existence is not
enough: we need to know which basis to use. Since all operators appearing in the sequel
are positive definite, we avoid this complication.

It is usually most convenient, in particular from a numerical viewpoint, to use the finite
section method in its matrix version:

Remark 1.5. The matrix formulation of the equationx = f with respect to an orthonor-
mal basige;}2 ; is

(Ver,e1) (Veg,e1) - - - (x,e1) (f,e1)
(Vei,e2) (Vea,e2) - - - (x, e2) (f,e2)

In caseH, has the orthonormal basjs,};_,, the matrix version of the Eq. (4) w.r.t. the
finite section method,

P, VPyxp =P, f (5)
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is
(Ver,e1) (Vez,e1) - - (Vey,e1) (xn, €1) (f,e1)
(Vei,e2) (Vez,e2) - - : (xXn, €2) (f, e2)
(Ver,ey) (Vez,en) - - (Vey, ep) (xn, en) (f. en)

If the finite section method applies, this finite matrix equation has a unique solution for
sufficiently large,

(X, €1) (Ver,er) (Vez,er) - - (Vew,en) ] [ (/s en)
(X, €2) (Vey,e2) (Vez,er) - - . (f, e2)
(xn»en) <V@l,€n> (VEZ»en> o (Venaen> (f»en>

and (5) has the solution

n

Xn = Z (X0, ex)eg.

k=1
Furthermorer, — V17,
We end this section by Schur’s Lemnfé,15], which will be needed repeatedly.

Lemma 1.6. Let M = {M;}7%_, be a matrix for whichM, = M, ; forall j. k € N
and for which there exists a constaBt> 0 such that

o0
Z IMj | <BVjeN.
k=1

Then M defines a bounded operator@iN) of norm at most B.

2. Approximation of the inverse frame operator

Given a framg fi};2 1, we now consider approximation of the frame oper&defined
in (1). The frame operator is positive definite, so the finite section method applies for
all families of projection operators, on space$<, satisfying (3). However, in order to
proceed, we need an easily computable form of the oper&d#,, which in practice is
not always available due to the fact that the frame operator is defined via an infinite series.
In order to develop a practically useful method we have to replace the opePaPs by
some operators which can be found using only finite-dimensional linear algebra.
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Our method is based on the following results:

Lemma 2.1. Assume tha{#,,}>° ; is a sequence of closed subspace® afatisfying(3),
and let P, be the orthogonal projection ontd,,. ConsiderP, S P, as an operator ort,.
ThenP, S P, is invertible and self-adjointetting 7,, denote the identity ofi,,, we have

1 _ 1
ALy < PySPy< By, — Ly <(PaSPy) 1< <
In particular,

1
|puspy| <.
A

Proof. It is clear thatP, S P, is self-adjoint. Givenf € H,,,

(PuSPuf, f)=(Sf. )= lfs fi)l>
k=1

If P,SP,f = 0 forsomef € H, it follows from here thatf = 0. The rest follows from
the frame condition. [J
Lemma 2.2. Assume that for each € N we have an operatad,, : H,, — H,, for which
A, — P,SP,|| — O0asn — oo. (6)
Then
ApPyf — Sfasn — oo Vf eH.

Furthermore the sequencea, }o° ; is stable,4,, is invertible for sufficiently large values
ofn e N, and

AP f — ST fasn — coVf € H.

Proof. By Lemmaz2.1,

lim inf H P,sP)tp,| " =A.
n—00

Now Lemmal.3 implies that the sequendel,};°, is stable, and Lemma 1.2 gives
therest. O

We have already seen thatd };° ; is an orthonormal basis f¢{ andX,, =span{¢};_;,
then thgl-th entry in the matrix forP, S P,, with respect tde; };_, is (Se;, e;). Foreacn
N we now give conditions on anx n matrix{l;?’l};’.’,:l which imply that the corresponding
operatorsA,, satisfy (6).
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Lemma 2.3. Fix ¢ > 0. Letn € N, and let{Z} ;}'} ,_; be a hermitian matrix such that
& i .
(Ser.ej) — A}, <-2 U=l 1=1,...,n. (7)
Then

3e
”An - PnSPn” g;

Proof. Via Schur's Lemma the norm of the operator given by the maftSe;, e;) —
2} 1} 1=y can be estimated by

e ¢g/2 - - g/2"
1 e/2 ¢ . 3
saen—maa| <2 T T |<® o
H{( €] e./) ,/,l}k,l_l n . . o . n
8/2” . .. &

Itis very natural to let the matrix entrid.?[ appearing in (7) be related to the partial sums
of the sum defining the frame operator. Note thatf@ N, the frame operator associated
with {fi}7_q is

Sy = span{filiy — sparififizy, Suf =Y _(f: fi) fi- ®)

k=1
We will choose’; ; of the form
/1’;,]=<Sm(n)el’€j>, j,l=1,...,n; (9)

here we have to find the numbern) >n such that (7) is satisfied. This calwaysbe done.
We show in Lemmas 2.5 and 2.6 how explicit valuesign) can be obtained fdocalized
frames, a concept introduced by Gréchenig in [8].

Definition 2.4. The framg fi};2 ; ispolynomially localizeavith respect to the orthonormal
basis{e; };2; with decays > 0 (or simplys-localized), if for some constagt > 0

[(fr. e <CA+1k—1D~° Vk,l € N. (10)

The frame{ fi};2 ; is exponentially localizediith respect to the orthonormal basig } 72 ;
if for somea > 0 and some constant > 0

(e e <Ce™™ M vk, e N (11)

Localization with respect to a Riesz bagig} 2 ; is defined similarly, except that condition
(10) (resp. (11)) also is assumed to hold with}7° ; replaced by the dual Riesz basis

{er}kez.
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Lemma 2.5. Assume that the framigf; }72 ; is exponentially localized with respect to the
basis{e;}2 ;. Thenfor anym(n) >n,

—20

2 2 -
H{|(Se,,e,-) - (Sm(,,)el,ej)|};f’l:1H <C i mma e ¢ 2(m(m)—m)
Proof. If we choosen(n) >n, thenforallj, i =1,...,n,
o0
(Ser. ej) = (Smaere)l = | D e, fi)(fer €))
k=m(n)+1
o0
<c? Z o~ k=11 ,—alk—jl
k=m(n)+1
o0
< c? Z o~ 2k—=1=))
k=m(n)+1
— Cze—Za(m(n)+1)+a(l+j)(1 o 67201)71. (12)

Thus, the entries in the matrix(Se;, ej) — (Smmer, ej)|};%_l:1 are element-wise smaller
than or equal to the entries in the matrix '

eZa e3a .. e+l
e | e e
c? .
1_e_2a . . . . .
eoc(n+l) eac(n+2) L. eme
e—2:xn e—oz(Zn—l) L. e—oc(n+1)
, e—Zoz(m(n)—n) efc((anl) 6‘7“(2'172)
- 1— e 2
e—cx(n+1) e~ on L. e—2a

The norm of this matrix can be estimated by Schurs Lemma, so we arrive at
ze—Zoc(m(n)—n) n+l

1— e 2

—ok

[eser, e) = (Smaer eV s < e

k=2

e—23c
2 e—ZOC(m (n)—n) ) O

l—e2)(1—e%)

The result in Lemm&.5 can be formulated slightly differently: in fact, by choosing
m(n) = rn for somer > 1, there exists a consta@t > 0 such that

[t16Ser, e) = (Snamer. eV | <Crem20-bm,

In words, this says that exponential localization of the frame leads to an exponential rate of
approximation of (Se;, ej>}’}’l:1.
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Lemma 2.6. Assume that the franfg } 72 , is s-localized with respect to the basgig} 2 ,,
withs > 1. lf m(n) > (2n)ﬁ then

[Ser. ey = (Smaner. e 11| <€~

Proof. We have

|(Ser, ej) — (Smner. €j)| = Z (e, fi){frse)) (13)
k=m(n)+1
<C? YT A+k=IDTA+Ik— D (14)
k=m(n)+1

We define the index sefs = (k>mn)+1: |k —1|<|l— j|/2}andlp = {k>m((n) +1:
|k —1] > |l — j|/2}. Proceeding as ifL1] we split the sum in (14) into two sums, such that
k runs through the index sét and1», respectively. Ik € I1 then|k — j| >|j —1]/2, hence

C2Y A+ =1 A+ lk—jD T <CPA+ i —1/27 Y A+ k=1~
kelp kelp

Furthermore

C2Y A+ k—IDTA+k—jD T <C2A+1j —11/27° Y A+1k—jD",

kel kel
Thus

0

> e fidlfioe))
k=m(n)+1

o0 o
L2CPA+1—jp [ DY Aa+k-mT+ D A+lk—jD°
k=m(n)+1 k=m(n)+1

s 2

< S _ s+l s+l
<SS @k i= i [(me+1-07 ) + (men + 1- )],

where we have used the estimate

o0 o0 —s+1
1_
E A+ k=D))< / AI+x—-D"'dx = = 1 2 ’
k=m(n)+1 m(n) 5=

By assumptiom (n) > (Zn)ﬁ, soforr=1,...n,

e +1 -1~ < (@t 4 1-r) < (o) o
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Using that supZ[’il(l + 1l — jD™* < oo (by [8, Lemma 2.1]) and applying Schur’s
Lemma we obtain

ZSCZ —s - Sy —S /=S

ln ;(14— —jh 7 <Cn.

J1165er, ) = Smaner. el e <

as claimed. O

In the two previous lemmas we have shown th&#, e;) can be approximated by
(Smyei, ej) with an error rate that depends on the localization of the frafpg? ;. How-
ever in practice we may not even know the matrix enti@@,s: (Smmyer, ej) exactly. When
we compute the inner produdS,, . e;, ¢;) by numerical integration we obtain an approx-

H H sn H HH “ ” H
imation/; , to 4} ;, hence we introduce an additional error. But for “reasonable” functions

{ [}l ler}ie itis not difficult to approximatel;{l by standard numerical integration

techniques such that the ernég’, — 2| is always smaller than any prescribed tolerance.
Thus we will henceforth tacitly assume that the matrix entrie{sﬂ@;} have been com-
puted with sufficient accuracy and absorb any error resulting from numerical integration in
a constant in our error estimates.

We now show how the localization properties of a given frame determine the convergence
order of the proposed approximation method. We need the following result; (a) and (b)
follows from Jaffard’s “lemmes de la fenétre” in Section Il [dfl], and (c) is a classical
result which can be found, e.g., in [12].

Lemma 2.7. Let A = [A, ;] and B = [By ] be two invertible matrices with, / € N and
let A,, and B, ben x n principal leading submatrices of A and @spectively. Assume that
there exists amg € N such that4,, and B,, are invertible for alln > ng.

(a) If there existC, « > 0 such that for alln > ng

[AWIks = [Bulii| < Ce ™,
then there exist'1, o1 > 0 independent of n such that for all>ng
1A, ks — 1By el < Cre™ L
(b) If there existC > 0, s > 1 such that for alln >ng
[Anlks — [Bulks | SC(L+ k= 1)),
then there exists €1 > 0 independent of n such that for all>ng
1A, ks — 1By el SC1(L+ ke — 1)
(c) If there existC, « > 0 such that
|Ag | < Ce ™ vk, 1,
then there exis€1, o1 > 0 such that

A" 1 < Cre™ vk, 1,
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Let {ex};2 , be an orthonormal basis fét. We define the operatofs 7, via
o n
T:0%2 > H, T{cx} = Z crex, T,:C"— H, Tck} = Z cre.
k=1 k=1
Their adjoints are given by
T*:H— 02, T f={{fa))f2. T H—>C T f = {(f e)liy-
Forn € N andx € ¢2(Z) we define the orthogonal projectiofs by
P}’lxZ(Xl’x27'-'5xn707oa"-)a (15)
and identify the image aP, with then-dimensional space” (in this sensd;, P, {ck};_1 =
T, {Ck};z:]_)-
Lemmas2.5 and 2.6 tell explicitly (in terms of the involved constants) how to choose

m(n) > n such that (7) is satisfied; by Lemmas 2.3 and 2.2 this implies thatthematrix
A, with entries

ﬂ;l-,l = (Smmei €j), j,l=1...,n (16)

is invertible forn sufficiently large. In the formulation of Theoret8 below we tacitly
assume that is chosen sufficiently large.

Theorem 2.8. Let { fy};2, be a frame with frame operator S and let};2, be an or-
thonormal basis fof{. Furthermore et A,, be then x n matrix with the entries defined in
(16).Let f € H and set

n
hn =Y (AT rer.
k=1

(a) Assume that f;};2 ; is exponentially localized w.r.{e;};°; and that there exists a
constantC > 0 and anx > 0 such that

I(f, ex)| <Ce™  fork e N.
If we choosen(n) = rn for somer > 1,then forng € N large enough
IS7Lf —hy||<Cle™™  forall n > no,
for somex’ > 0 (but possiblyx’ < &) and some constar’ > 0 independent of n.
(b) Assume thaltfi )2 ; is s-localized w.r.t{e, } 2 ; and that there exists a constanit> 0

such that

[(f,e)| <SC(L+ k)~ for k € N.
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If m(n) is chosen as in Lemn&a6then forng € N large enough
IS7Lf —ha | <C'A+m) L forall n > no,

for some constard’ > 0 independent of n.

Proof. We only show part (a), the proof of part (b) is similar. In what folloygsand Cy
denote positive constants, with depending oy, but both constants independentoft
is a consequence of Lemr@a2 and the choice of(n) that there exists amg such that for
all » > ng the matrixA, is invertible. LetA be the matrix given byl;; = (Se;, ¢;). The
reader will easily convince herself th&j, A P, is invertible, sincea is hermitian positive
definite. Fom > ng we estimate

STV = hall = ITATT* f = T, AT
SNTATT* f = T, Py AT |

Ty Pu AT f = Ty (PaAP) P, T* f|

HI T (PaAP) P T f = T AT £ (17)
We estimate the three terms on the right-hand-side of (17) separately.

Since(Se;, ej) = > poqler, fi)(fx, ej) and since f¢}72 ; is exponentially localized by

assumption we can apply Proposition 3.4(b) in [8] and conclude| that < Coe%olF—!I,
By Proposition 2 in [11] it follows that the entries df * satisfy|A,;ll| < Cre~k =1l Hence

o
ITATIT*f = T, P AT fl = || Y (AT e} ker|| <C2e7*2". (18)

k=n+1

Concerning the second term on the right-hand-side of (17) we recallitisah hermitian
positive-definite matrix. It is well-known that the finite section method applies in this case
(see e.g. [14, Lemma 2.3]) and th(B, AP,) 1P, T*f — A~'T*f asn — oo. Since
exponential off-diagonal decay of implies exponential off-diagonal decay df * (see
Lemma 2.7(c)) and sincE* f decays exponentially by assumption, we can proceed along
the same lines as in the proof of (3.18) of Theorem 3 in [13] and obtain

I T AT f — T (PyAP) P T £ < |1 Ty | C3e™ %" < Cge ™3, (19)
Let L,, denote the: x n matrix [Ak,,]z’,:l. Itis easy to see that
Ty(PuAPy) P, T* f = T, L, T} 1. (20)

Hence, sincg A 1| — || 471 asn — oo (by Lemmasg2.2 and 2.7)||L; 1| < |47Y||, and
|4, — L,|| < Cge™*" (by (2)) there holds
ITw(PaAP) P T f = Ty AT fIl = 1 To Ly T f = T A T f
SITullLy M An = Lalll A, T £1] < Cse ™" (21)
Combining (17) with estimates (18), (19), and (21) yields Theorem (2.8) (a).

We note that Grochenig recently introduced the concept intrinsically localized frames in
[9]; the advantage compared to the type of localization discussed in [8] that the definition
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is given directly in terms of the elements in the frame, i.e., no choice of an orthonormal
basis needs to be made. We expect results similar to The2i&io hold for intrinsically
localized frames, but it is not immediately clear how to modify the proof.

3. Frames for shift-invariant spaces

In this section we demonstrate that the proposed method can be used to compute numer-
ically dual frames for frames related to shift-invariant spaces. Throughout this section it is
more convenient to usé rather tharlN as index set for the frame elements. Itis easy to see
that all results in Sections 1 and 2 can be reformulated for frames of the{faine7; we
simply replace all index sets of the type2,...n by —n, ....n.

Let us shortly recall the standard setup for shift-invariant spaces [1]) let.?(R) be
a continuous function for which the following conditions are satisfied:

e forsomeC > 0,s > 1,
W) <CA+[xh". (22)

e {Y(- —k)}rez is a Riesz basis for its closed linear span,

H:=Spay(- — k)kez = { Y b — k) [{ex} € €21 (23)

keZ

Then? is a so-called reproducing kernel Hilbert space, i.e., the point evalugtiensf (x)
are continuous linear functionals 61, [15,4]. Thus, for eaclr € R, there existX, € H
such that

f@x) = (f, Kx). (24)
If {A}rez is a set of sampling foH, i.e., there exist constants B > 0 such that

AIFIPS Y IF P BIfIPYS € H,

keZ

then{K, }icz is a frame forH. Our goal is to compute the dual framé;_k ez
Let ¢ be the function whose Fourier transform is given by

() ,
Xz W + P2

then{p(- — k)}re7z is an orthonormal basis fdk, see[4,6]. Furthermorelo(- — k)}rez
inherits the localization properties @ (- — k)};c7z, which is an immediate consequence

of Lemma 3.1 in [8] (see also [13]) and the square-root theorem for Banach algebras [7].
Formula (25) provides an efficient and stable way to approximatemerically, simply by
truncating the sum in (25) and carrying out the inverse Fourier transform by standard nu-

merical integration (e.g., by using an FFT appliec{ij()k/N)},i\’:/fl\,/2 for Nlarge enough).

P(w) = (25)
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Using the orthonormal bas{® (- — k)}xcz for H, itis known [1] thatK ;, can be written
as

K=Y oGk —me-—n). (26)
neZ

Itfollows from paragraph 3.3 if8] that{ K ;, },cz iss-localized with respect @ (-—k) }iez.
Let S denote the frame operator f¢K;, };cz. The dual frame is given byqj =
S*lej,j € Z; in order to apply Theorem 2.8 witlf = K;;, we have to calculate

z:=A,'T;}K;,, i.e., to solve the equation

Az = Tn*Kif (27)

The entries of the matrix,, w.r.t. the choice of orthonormal basis = ¢ (- — k) are

m(n)

(Smmer-er) =Y lex. K; )(K;, . er) (28)
Jj=—m(n)
m(n)
= > <<,o(-—k>,Zqo<zj—n>cp(-—n)>
Jj=—m(n) neZ
x<Z P2 —m)(- —m), p(- — 1>>
meZ
m(n)
= > o0 —keG; -, (29)
Jj=—m(n)

where we have used thap(- — k), @ (- — 1)) = . Via (24),
TiK;, = (K. oC — D)y ="e

I=—m(n)
= {0 - D]

I=m(n)
I=—m(n)

Now Eq. (27) can be solved by standard methods from linear algebra, such as conjugate
gradient type techniques. Theorem 2.8 implies that in this way we can approximate the dual
frame with an error that decreases polynomiallyfor co.

Our approach also provides an answer to another computational issue, which appears in,

e.g., [1]:

Example 3.1. Let {/;} ;7 be a set of sampling and assume that we want to reconstruct
f € H from the sample$f(/;)}jcz. Here we can assume without loss of generality that
the functiong{¢ (- — k)} that decay as in (22) and spahas in (23) form an ONB instead

of a Riesz basis (otherwise we can always transform the Riesz basis into an ONB with the
same decay properties as described in (25)). Sioae be writtenag' = >, .7 ck (- —k)

we can reconstruétby computing the coefficient vector= {ci}rcz, which in turn can be
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calculated by solving the infinite-dimensional system of equations
Uc={f(4j)}jez, (30)
whereU is a biinfinite matrix with entries
Uix = @(; — k), jk e Z. (31)

Of course in reality we cannot solve an infinite-dimensional system but we have to come up
with a finite-dimensional system instead. No statement is maflf about how to solve

(30) in practice; in fact the finite section method does in general not apply to (30) (see
Example 3.2 below). However, we now show that the finite section method applies to the
normal equations

U'Uc=U{f(lj)}jez- (32)
Note that
WU =) @y —koj =1, kleZ: ==
JjeZ

by a computation as in (28)—(29) this shows &t coincides with the complex conjugated
of the matrix{(Sex, e)}x.1cz. Thus if we approximat&*U by the matrix{ik,,};j,,?n with
the entries in (29), we can indeed stably approximate the coefficiegits.z and thus
numerically reconstrudtwith an approximation error governed by the decay rate.of

Here is a concrete example where the finite section method does not apply to (30):

Example 3.2. Lety = 24 IXD7—1/2.1/2)- Then{y/(- — k)};cz is a Riesz basis for its
closed span which is denoted B Furthermore, lef>; =2j —1,42;_1 = 2jfor j € Z.
Then anyf € H can be written a§ = Y ., cxf(- — k) for ¢ = {cilrez € €3(2), in
particularf (4;) = 3 _ycz ck¥(4; — k) = ¢;,. Thus

DIFOHPE=Y les, P =) lel, (34)

JjezZ keZ keZ

becausd/;};cz is just a reordering oZ. By the Riesz basis condition this implies that
{/;};ez is a set of sampling foF, hence theoretically any functiofi € # can be recon-
structed from its samples (4,)} jcz. Considering (30) with the matrid in (31) we note

that the finite section method obviously does not work for the natural choice of orthonormal
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basis: in fact, the finite sectiorg, of the matrixU are of the form

0 00O0O
010 00100
U=y —-0=0, U;=|1 0 0|,U,=|0 1 0 0 O},
0 0O 0 00 O0 1
00010
[0 1. 0 0 0 0 O]
1 00O0O0O0O
0001000
U3=|0 0 1 0 0 0 0f.
000O0OO0OZ1I0
000O0O1O00
|0 0000 0 0]

Hence none of thé/, is invertible, althougtU is invertible, since it is just a permutation
matrix.

In contrast, the finite section method described in Exar8lenvorks very well in this
case (of course the following steps are not really necessary in this casd/)seqmesents a
unitary operator): The familfy (- — k)}rcz can be transformed into an ONB (- — k) }rc7
where ¢ has exponential decay (the statement about the decay is some kind of folklore
result, which is not stated explicitly in the literature; it follows by extending the results in
[13] to L2(R) or by combining Lemma 4.1 in [8] with the square root theorem for Banach
algebras [7]). Hence, by the derivations in Example 3.1 and by Theorem 2.8 the finite section
method applies to the normal equations (32) with an exponential order of convergence.

4. The Casazza—Christensen method

As a final application of our results we now prove that they lead to an improvement of
the Casazza—Christensen method (cf. [3]) for approximation of the inverse frame operator
related to a general frame. We consider again a frafpg?” ; for a Hilbert spaceH, the
associated frame operator defined in (1), a sequence of subspdgessdh (3), and the
associated orthogonal projectioRs.

A straightforward application of Theorem 1.10 in [10] shows that

(PoSP) P, f — STLFVf e

However, in order to obtain a practically applicable result we have to replace the operators
P, S P, by operators which only involve a finite number of the frame elements. Givef,
consider again the frame operafyrassociated t¢f;};_;, see (8)S, is invertible on#,,,
but usuallys1 P, f does not converge t§~ f. Our purpose is to show that fore N we
can chosen(n) € N such that

(PaSpimmyP) 2Py f — S71fasn — coVf € H. (35)
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The possibility of doing so is also proved [8], but the method presented here leads to
considerably smaller values for(n), a very important issue as soon as the computational
effort is considered.

Theorem 4.1. ChooseR < A. Givenn € N, choosen(n) € N such that

o0

Y KL MIPLRILIPYS € Ha

k=n+m(n)+1

Then{P, S, ymn) Pnloe 4 is applicablein particular, (35) holds.

Proof. Regardless of the choice af(n) > 0 the sequenceP, S, 4m ) Pn ;-1 IS an approx-
imation method foiS. Now

PnSn+m(n)Pn = PnSPn + Pn(Sn+m(n) - S)Pn;

thus we can considelP, S, 1) Pn},~1 @s a perturbation of the stable approximation
method{ P, SP,}> ;. Foralln € N,

HPn(Sn—Q—m(n) = 8) Pn H = sup |(Pn(Sn+m(n) =S Puf, )
I flI=1, feH,

o
= sup Yo AP
I £1I=1, feH, k=n+m(n)+1
<R
< A.

By Lemma2.1 we have|(P,SP,)~1||<1/A for all n, so it follows that
-1
sup ||Pn(Sn+m(n) _S)Pn” < ”21: H(PnSPn)_:LH .
n

By Lemmal.3 we conclude thatP, S, P») is applicable. [

Compared to the result by Casazza/Christensen [3], the advantage of Theorem 4.1 is
that R can be chosen as any constant smaller thain [3] a similar result was ob-
tained, but withR was depending on, and forced to tend to zero far — oo. This,
in turn, implies thatn(n) is forced to be unnecessarily large, and thereby complicate the
computations.

Final remark. All results for approximatings—! can be extended to approximatiﬁq%,

for instance by proceeding along similar lines as in Theorem 8.1.4 of [5]. This extension
is useful when one wants to numerically compute tight frames of the tdrn% fileeq
Furthermore, using the results in [2] one can easily extend the results in this paper to
frames whose localization is characterized by decay other than polynomial or exponential
decay.
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