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Abstract

The finite section method is a convenient tool for approximation of the inverse of certain operators
using finite-dimensional matrix techniques. In this paper we demonstrate that the method is very
useful in frame theory: it leads to an efficient approximation of the inverse frame operator and also
solves related computational problems in frame theory. In the case of a frame which is localized w.r.t.
an orthonormal basis we are able to estimate the rate of approximation. The results are applied to the
reproducing kernel frame appearing in the theory for shift-invariant spaces generated by a Riesz basis.
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1. Introduction

LetH be a separable Hilbert space. A family{fk}∞k=1 of elements inH is aframefor H
if there exist constantsA,B > 0 such that

A‖f ‖2�
∞∑
k=1

|〈f, fk〉|2�B‖f ‖2 ∀f ∈ H.
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Given a frame{fk}∞k=1, the frame operator

S : H → H, Sf =
∞∑
k=1

〈f, fk〉fk (1)

is bounded and invertible, and eachf ∈ H has the representation

f =
∞∑
k=1

〈S−1f, fk〉fk, (2)

see[4,6,15]. In order to use (2) in practice, we need efficient methods to invert the frame
operator. The problemof designing finite-dimensionalmodels for approximating the inverse
frame operator leads to delicate questions of stability and convergence, cf. [5] and the
references cited therein. In this paper we demonstrate that the finite section method, when
applied properly, is very useful for this purpose.
We present the general results in Section 2. In Section 3 we apply our findings to two

important issues in the theory of shift-invariant spaces generated by a Riesz basis: namely,
inversion of the frame operator associated to the reproducing kernel frame, and reconstruc-
tion of a function from a set of sampling. Finally, in Section 4 we show that the finite
section method leads to better results in general frame theory than the Casazza–Christensen
method.
In the rest of this introduction we collect some basic facts concerning the finite section

method. Let{fk}∞k=1 be a frame for a separable Hilbert spaceH and{Hn}∞n=1 a family of
finite-dimensional subspaces ofH for which

H1 ⊆ H2 ⊆ · · · ⊆ Hn ↑ H. (3)

Let Pn denote the orthogonal projection ofH ontoHn. Our purpose is to approximate a
bounded operatorV : H → H and its inverse. The basic definition, appearing in e.g.,[10],
is as follows.

Definition 1.1. Let V : H → H be a bounded operator, and assume that for eachn ∈ N

we have given a bounded operatorVn : Hn → Hn.

(i) The sequence{Vn}∞n=1 is an approximation method for the operatorV if

VnPnf → Vf for n → ∞ ∀f ∈ H.
(ii) An approximation method is applicable if there existsn0 ∈ N such that for allf ∈ H

the equation

Vnx = Pnf (4)

has a unique solutionxn for all n�n0, andxn converges to a solution of the equation
V x = f .

(iii) The sequence{Vn}∞n=1 is stable if there existsno ∈ N such that the operatorsVn are
invertible onHn for n�n0 and

sup
n�n0

‖V −1
n Pn‖ < ∞.
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We need two results from[10, Theorems 1.4, 1.17].

Lemma 1.2. An approximation method{Vn}∞n=1 associated to an operator V is applicable
if and only if V is invertible and{Vn}∞n=1 is stable.

Lemma1.2 implies that if{Vn}∞n=1 is applicable, thenV is invertible and

V −1
n Pnf → V −1f ∀f ∈ H.

Lemma 1.3. Assume that the approximation method{Vn}∞n=1 is stable. If{Wn}∞n=1 is a
sequence of operators for which

lim sup
n→∞

‖WnPn‖ < lim inf
n→∞ ‖V −1

n Pn‖−1,

then{Vn +Wn}∞n=1 is stable.

An example of an approximation method associated toV is the family of operators
{PnV Pn}∞n=1, wherePn are orthogonal projections onto subspacesHn satisfying (3). This
special type of approximation method is called afinite section method.

Proposition 1.4. Assume that{Hn}∞n=1 is a sequence of closed subspaces ofH satisfying
(3),and letPn be the orthogonal projection ontoHn.Then the finite section method applies
for an arbitrary positive definite operator V.

Proposition 1.4 is proved in [10, p. 32], for the case where there is an orthonormal basis
{ek}∞k=1 for H such thatHn = span{ek}nk=1. The general case follows from here. We note
that for an arbitrary invertible operatorV there always exists an orthonormal basis such that
the finite section method applies. However, for practical purposes the pure existence is not
enough: we need to know which basis to use. Since all operators appearing in the sequel
are positive definite, we avoid this complication.
It is usually most convenient, in particular from a numerical viewpoint, to use the finite

section method in its matrix version:

Remark 1.5. The matrix formulation of the equationV x = f with respect to an orthonor-
mal basis{ek}∞k=1 is


〈V e1, e1〉 〈V e2, e1〉 · · ·
〈V e1, e2〉 〈V e2, e2〉 · · ·

· · · · ·
· · · · ·
· · · · ·







〈x, e1〉
〈x, e2〉

·
·
·


 =




〈f, e1〉
〈f, e2〉

·
·
·


 .

In caseHn has the orthonormal basis{ek}nk=1, the matrix version of the Eq. (4) w.r.t. the
finite section method,

PnV Pnxn = Pnf (5)
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is 


〈V e1, e1〉 〈V e2, e1〉 · · 〈V en, e1〉
〈V e1, e2〉 〈V e2, e2〉 · · ·

· · · · ·
· · · · ·

〈V e1, en〉 〈V e2, en〉 · · 〈V en, en〉







〈xn, e1〉
〈xn, e2〉

·
·

〈xn, en〉


 =




〈f, e1〉
〈f, e2〉

·
·

〈f, en〉


 .

If the finite section method applies, this finite matrix equation has a unique solution forn
sufficiently large,




〈xn, e1〉
〈xn, e2〉

·
·

〈xn, en〉


 =




〈V e1, e1〉 〈V e2, e1〉 · · 〈V en, e1〉
〈V e1, e2〉 〈V e2, e2〉 · · ·

· · · · ·
· · · · ·

〈V e1, en〉 〈V e2, en〉 · · 〈V en, en〉




−1


〈f, e1〉
〈f, e2〉

·
·

〈f, en〉


 ,

and (5) has the solution

xn =
n∑
k=1

〈xn, ek〉ek.

Furthermorexn → V −1f .

We end this section by Schur’s Lemma,[4,15], which will be needed repeatedly.

Lemma 1.6. LetM = {Mj,k}∞j,k=1 be a matrix for whichMj,k = Mk,j for all j, k ∈ N

and for which there exists a constantB > 0 such that

∞∑
k=1

|Mj,k|�B ∀j ∈ N.

Then M defines a bounded operator on�2(N) of norm at most B.

2. Approximation of the inverse frame operator

Given a frame{fk}∞k=1, we now consider approximation of the frame operatorSdefined
in (1). The frame operator is positive definite, so the finite section method applies for
all families of projection operatorsPn on spacesHn satisfying (3). However, in order to
proceed, we need an easily computable form of the operatorsPnSPn, which in practice is
not always available due to the fact that the frame operator is defined via an infinite series.
In order to develop a practically useful method we have to replace the operatorsPnSPn by
some operators which can be found using only finite-dimensional linear algebra.
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Our method is based on the following results:

Lemma 2.1. Assume that{Hn}∞n=1 is a sequence of closed subspaces ofH satisfying(3),
and letPn be the orthogonal projection ontoHn. ConsiderPnSPn as an operator onHn.
ThenPnSPn is invertible and self-adjoint;letting In denote the identity onHn, we have

AIn�PnSPn�BIn,
1

B
In�(PnSPn)−1� 1

A
In.

In particular,∥∥∥(PnSPn)−1
∥∥∥ � 1

A
.

Proof. It is clear thatPnSPn is self-adjoint. Givenf ∈ Hn,

〈PnSPnf, f 〉 = 〈Sf, f 〉 =
∞∑
k=1

|〈f, fk〉|2.

If PnSPnf = 0 for somef ∈ Hn it follows from here thatf = 0. The rest follows from
the frame condition. �

Lemma 2.2. Assume that for eachn ∈ N we have an operator�n : Hn → Hn for which

‖�n − PnSPn‖ → 0 asn → ∞. (6)

Then

�nPnf → Sf asn → ∞ ∀f ∈ H.
Furthermore,the sequence{�n}∞n=1 is stable,�n is invertible for sufficiently large values
of n ∈ N, and

�−1
n Pnf → S−1f asn → ∞ ∀f ∈ H.

Proof. By Lemma2.1,

lim inf
n→∞

∥∥∥(PnSPn)−1Pn

∥∥∥−1
�A.

Now Lemma1.3 implies that the sequence{�n}∞n=1 is stable, and Lemma 1.2 gives
the rest. �
Wehave already seen that if{ek}∞k=1 is an orthonormal basis forH andHn =span{ek}nk=1,

then thejl-th entry in thematrix forPnSPn with respect to{ek}nk=1 is 〈Sel, ej 〉. For eachn ∈
Nwe now give conditions on ann×nmatrix{�nj,l}nj,l=1 which imply that the corresponding
operators�n satisfy (6).
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Lemma 2.3. Fix � > 0.Letn ∈ N, and let{�nj,l}nj,l=1 be a hermitian matrix such that∣∣∣〈Sel, ej 〉 − �nj,l
∣∣∣ � �

n
2−|j−l|, j, l = 1, . . . , n. (7)

Then

‖�n − PnSPn‖ � 3�
n
.

Proof. Via Schur’s Lemma the norm of the operator given by the matrix{〈Sel, ej 〉 −
�nj,l}nj,l=1 can be estimated by

∥∥∥{〈Sel, ej 〉 − �nj,l}nk,l=1

∥∥∥ � 1

n

∥∥∥∥∥∥∥∥∥∥




� �/2 · · �/2n

�/2 � · · ·
· · · · ·
· · · · ·

�/2n · · · �




∥∥∥∥∥∥∥∥∥∥
� 3�
n
. �

It is very natural to let thematrix entries�nj,l appearing in (7) be related to the partial sums
of the sum defining the frame operator. Note that forn ∈ N, the frame operator associated
with {fk}nk=1 is

Sn : span{fk}nk=1 → span{fk}nk=1, Snf =
n∑
k=1

〈f, fk〉fk. (8)

We will choose�nj,l of the form

�nj,l = 〈Sm(n)el, ej 〉, j, l = 1, . . . , n; (9)

here we have to find the numberm(n)�n such that (7) is satisfied. This canalwaysbe done.
We show in Lemmas 2.5 and 2.6 how explicit values form(n) can be obtained forlocalized
frames, a concept introduced by Gröchenig in [8].

Definition 2.4. The frame{fk}∞k=1 ispolynomially localizedwith respect to theorthonormal
basis{ek}∞k=1 with decays > 0 (or simplys-localized), if for some constantC > 0

|〈fk, el〉|�C(1+ |k − l|)−s ∀k, l ∈ N. (10)

The frame{fk}∞k=1 is exponentially localizedwith respect to the orthonormal basis{ek}∞k=1
if for some� > 0 and some constantC > 0

|〈fk, el〉|�Ce−�|k−l| ∀k, l ∈ N. (11)

Localization with respect to a Riesz basis{ek}∞k=1 is defined similarly, except that condition
(10) (resp. (11)) also is assumed to hold with{ek}∞k=1 replaced by the dual Riesz basis
{ẽk}k∈Z.
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Lemma 2.5. Assume that the frame{fk}∞k=1 is exponentially localized with respect to the
basis{ek}∞k=1. Then,for anym(n)�n,∥∥∥{|〈Sel, ej 〉 − 〈Sm(n)el, ej 〉|}nj,l=1

∥∥∥ �C2 e−2�

(1− e−2�)(1− e−�)
e−2�(m(n)−n).

Proof. If we choosem(n)�n, then for allj, l = 1, . . . , n,

|〈Sel, ej 〉 − 〈Sm(n)el, ej 〉| =
∣∣∣∣∣∣

∞∑
k=m(n)+1

〈el, fk〉〈fk, ej 〉
∣∣∣∣∣∣

� C2
∞∑

k=m(n)+1

e−�|k−l|e−�|k−j |

� C2
∞∑

k=m(n)+1

e−�(2k−l−j)

= C2e−2�(m(n)+1)+�(l+j)(1− e−2�)−1. (12)

Thus, the entries in the matrix{|〈Sel, ej 〉 − 〈Sm(n)el, ej 〉|}nj,l=1 are element-wise smaller
than or equal to the entries in the matrix

C2 e
−2�(m(n)+1)

1− e−2�




e2� e3� · · e�(n+1)

e3� e4� · · ·
· · · · ·
· · · · ·

e�(n+1) e�(n+2) · · e2n�




= C2 e
−2�(m(n)−n)

1− e−2�




e−2�n e−�(2n−1) · · e−�(n+1)

e−�(2n−1) e−�(2n−2) · · ·
· · · · ·
· · · · ·

e−�(n+1) e−�n · · e−2�


 .

The norm of this matrix can be estimated by Schurs Lemma, so we arrive at∥∥∥{|〈Sel, ej 〉 − 〈Sm(n)el, ej 〉|}nj,l=1

∥∥∥ � C2e
−2�(m(n)−n)

1− e−2�

n+1∑
k=2

e−�k

� C2 e−2�

(1− e−2�)(1− e−�)
e−2�(m(n)−n). �

The result in Lemma2.5 can be formulated slightly differently: in fact, by choosing
m(n) = rn for somer > 1, there exists a constantC′ > 0 such that∥∥∥{|〈Sel, ej 〉 − 〈Sm(n)el, ej 〉|}nj,l=1

∥∥∥ �C′e−2�(r−1)n.

In words, this says that exponential localization of the frame leads to an exponential rate of
approximation of{〈Sel, ej 〉}nj,l=1.
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Lemma 2.6. Assume that the frame{fk}∞k=1 is s-localized with respect to the basis{ek}∞k=1,

with s > 1. If m(n)�(2n) s
s−1 then∥∥∥{|〈Sel, ej 〉 − 〈Sm(n)el, ej 〉|}nj,l=1

∥∥∥ �C′n−s .

Proof.We have

∣∣〈Sel, ej 〉 − 〈Sm(n)el, ej 〉
∣∣ =

∣∣∣∣∣∣
∞∑

k=m(n)+1

〈el, fk〉〈fk, ej 〉
∣∣∣∣∣∣ (13)

�C2
∞∑

k=m(n)+1

(1+ |k − l|)−s(1+ |k − j |)−s . (14)

We define the index setsI1 = {k�m(n)+ 1 : |k− l|� |l− j |/2} andI2 = {k�m(n)+ 1 :
|k− l| > |l− j |/2}. Proceeding as in[11] we split the sum in (14) into two sums, such that
k runs through the index setI1 andI2, respectively. Ifk ∈ I1 then|k− j |� |j − l|/2, hence

C2
∑
k∈I1

(1+ |k − l|)−s(1+ |k − j |)−s�C2(1+ |j − l|/2)−s
∑
k∈I1

(1+ |k − l|)−s .

Furthermore

C2
∑
k∈I2

(1+ |k − l|)−s(1+ |k − j |)−s�C2(1+ |j − l|/2)−s
∑
k∈I2

(1+ |k − j |)−s .

Thus ∣∣∣∣∣∣
∞∑

k=m(n)+1

〈el, fk〉〈fk, ej 〉
∣∣∣∣∣∣

�2sC2(1+ |l − j |)−s

 ∞∑
k=m(n)+1

(1+ |k − l|)−s +
∞∑

k=m(n)+1

(1+ |k − j |)−s



� 2sC2

s − 1
(1+ |l − j |)−s

[(
m(n)+ 1− l)−s+1

)
+

(
m(n)+ 1− j)−s+1

)]
,

where we have used the estimate

∞∑
k=m(n)+1

(1+ (k − l))−s�
∫ ∞

m(n)

(1+ x − l)−sdx = (m(n)+ 1− l)−s+1

s − 1
.

By assumptionm(n)�(2n) s
s−1 , so for r= 1, . . . n,

(m(n)+ 1− r)−s+1 �
(
(2n)

s
s−1 + 1− r

)−s+1
�

(
n

s
s−1

)−s+1 = n−s .



O. Christensen, T. Strohmer / Journal of Approximation Theory 133 (2005) 221–237 229

Using that supj
∑∞
l=1(1 + |l − j |)−s < ∞ (by [8, Lemma 2.1]) and applying Schur’s

Lemma we obtain∥∥∥{|〈Sel, ej 〉 − 〈Sm(n)el, ej 〉|}nj,l=1

∥∥∥ � 2sC2

s − 1
n−s

n∑
l=1

(1+ |l − j |)−s�C′n−s .

as claimed. �
In the two previous lemmas we have shown that〈Sel, ej 〉 can be approximated by

〈Sm(n)el, ej 〉 with an error rate that depends on the localization of the frame{fk}∞k=1. How-
ever in practice wemay not even know thematrix entries�nj,l = 〈Sm(n)el, ej 〉 exactly.When
we compute the inner products〈Sm(n)el, ej 〉 by numerical integration we obtain an approx-

imation �̃
n

j,l to �nj,l , hence we introduce an additional error. But for “reasonable” functions
{fk}∞k=1, {ek}∞k=1 it is not difficult to approximate�nj,l by standard numerical integration

techniques such that the error|�̃nj,l − �nj,l | is always smaller than any prescribed tolerance.
Thus we will henceforth tacitly assume that the matrix entries of{�nj,l} have been com-
puted with sufficient accuracy and absorb any error resulting from numerical integration in
a constant in our error estimates.
We now show how the localization properties of a given frame determine the convergence

order of the proposed approximation method. We need the following result; (a) and (b)
follows from Jaffard’s “lemmes de la fenêtre” in Section III of[11], and (c) is a classical
result which can be found, e.g., in [12].

Lemma 2.7. LetA = [Ak,l] andB = [Bk,l] be two invertible matrices withk, l ∈ N and
letAn andBn ben×n principal leading submatrices of A and B,respectively. Assume that
there exists ann0 ∈ N such thatAn andBn are invertible for alln�n0.

(a) If there existC, � > 0 such that for alln�n0
|[An]k,l − [Bn]k,l |�Ce−�|k−l|,

then there existC1, �1 > 0 independent of n such that for alln�n0
|[A−1

n ]k,l − [B−1
n ]k,l |�C1e

−�1|k−l|.

(b) If there existC > 0, s > 1 such that for alln�n0
|[An]k,l − [Bn]k,l |�C(1+ |k − l|)−s ,

then there exists aC1 > 0 independent of n such that for alln�n0
|[A−1

n ]k,l − [B−1
n ]k,l |�C1(1+ |k − l|)−s .

(c) If there existC, � > 0 such that

|Ak,l |�Ce−�|k−l| ∀k, l,
then there existC1, �1 > 0 such that

|[A−1]k,l |�C1e
−�1|k−l| ∀k, l.
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Let {ek}∞k=1 be an orthonormal basis forH. We define the operatorsT , Tn via

T : �2 → H, T {ck} =
∞∑
k=1

ckek, Tn : Cn → H, Tn{ck} =
n∑
k=1

ckek.

Their adjoints are given by

T ∗ : H → �2, T ∗f = {〈f, ek〉}∞k=1, T ∗
n : H → Cn, T ∗

n f = {〈f, ek〉}nk=1.

Forn ∈ N andx ∈ �2(Z) we define the orthogonal projectionsPn by

Pnx = (x1, x2, . . . , xn, 0, 0, . . .), (15)

and identify the image ofPn with then-dimensional spaceCn (in this senseTnPn{ck}nk=1 =
Tn{ck}nk=1).
Lemmas2.5 and 2.6 tell explicitly (in terms of the involved constants) how to choose

m(n) > n such that (7) is satisfied; by Lemmas 2.3 and 2.2 this implies that then×nmatrix
�n with entries

�nj,l = 〈Sm(n)el, ej 〉, j, l = 1, . . . , n (16)

is invertible forn sufficiently large. In the formulation of Theorem2.8 below we tacitly
assume thatn is chosen sufficiently large.

Theorem 2.8. Let {fk}∞k=1 be a frame with frame operator S and let{ek}∞k=1 be an or-
thonormal basis forH. Furthermore,let�n be then× nmatrix with the entries defined in
(16).Letf ∈ H and set

hn =
n∑
k=1

(�−1
n T

∗
n f )kek.

(a)Assume that{fk}∞k=1 is exponentially localized w.r.t.{ek}∞k=1 and that there exists a
constantC > 0 and an� > 0 such that

|〈f, ek〉|�Ce−�k for k ∈ N.

If we choosem(n) = rn for somer > 1, then forn0 ∈ N large enough

‖S−1f − hn‖�C′e−�′n for all n > n0,

for some�′ > 0 (but possibly�′ < �) and some constantC′ > 0 independent of n.
(b)Assume that{fk}∞k=1 is s-localizedw.r.t.{ek}∞k=1 and that there exists a constantC > 0

such that

|〈f, ek〉|�C(1+ k)−s for k ∈ N.
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If m(n) is chosen as in Lemma2.6 then forn0 ∈ N large enough

‖S−1f − hn‖�C′(1+ n)−s+1 for all n > n0,

for some constantC′ > 0 independent of n.

Proof.We only show part (a), the proof of part (b) is similar. In what follows�k andCk
denote positive constants, withCk depending on�k, but both constants independent ofn. It
is a consequence of Lemma2.2 and the choice ofm(n) that there exists ann0 such that for
all n > n0 the matrix�n is invertible. Let� be the matrix given by�j,l = 〈Sel, ej 〉. The
reader will easily convince herself thatPn�Pn is invertible, since� is hermitian positive
definite. Forn > n0 we estimate

‖S−1f − hn‖ = ‖T�−1T ∗f − Tn�−1
n T

∗
n f ‖

� ‖T�−1T ∗f − TnPn�−1T ∗f ‖
+‖TnPn�−1T ∗f − Tn(Pn�Pn)−1PnT

∗f ‖
+‖Tn(Pn�Pn)−1PnT

∗f − Tn�−1
n T

∗
n f ‖. (17)

We estimate the three terms on the right-hand-side of (17) separately.
Since〈Sel, ej 〉 = ∑∞

k=1〈el, fk〉〈fk, ej 〉 and since{fk}∞k=1 is exponentially localized by
assumption we can apply Proposition 3.4(b) in [8] and conclude that|�k,l |�C0e

−�0|k−l|.
ByProposition 2 in [11] it follows that the entries of�−1 satisfy|�−1

k,l |�C1e
−�1|k−l|. Hence

‖T�−1T ∗f − TnPn�−1T ∗f ‖ =
∥∥∥∥∥

∞∑
k=n+1

(�−1{〈f, el〉}∞l=1)kek

∥∥∥∥∥ �C2e
−�2n. (18)

Concerning the second term on the right-hand-side of (17) we recall that� is a hermitian
positive-definite matrix. It is well-known that the finite section method applies in this case
(see e.g. [14, Lemma 2.3]) and thus(Pn�Pn)−1PnT

∗f → �−1T ∗f asn → ∞. Since
exponential off-diagonal decay of� implies exponential off-diagonal decay of�−1 (see
Lemma 2.7(c)) and sinceT ∗f decays exponentially by assumption, we can proceed along
the same lines as in the proof of (3.18) of Theorem 3 in [13] and obtain

‖Tn�−1T ∗f − Tn(Pn�Pn)−1PnT
∗f ‖�‖Tn‖C3e

−�3n�C3e
−�3n. (19)

LetLn denote then× n matrix [�k,l]nk,l=1. It is easy to see that

Tn(Pn�Pn)−1PnT
∗f = TnL

−1
n T

∗
n f. (20)

Hence, since‖�−1
n ‖ → ‖�−1‖ asn → ∞ (by Lemmas2.2 and 2.7),‖L−1

n ‖�‖�−1‖, and
‖�n − Ln‖�C4e

−�4n (by (2)) there holds

‖Tn(Pn�Pn)−1PnT
∗f − Tn�−1

n T
∗
n f ‖ = ‖TnL−1

n T
∗
n f − Tn�−1

n T
∗
n f ‖

�‖Tn‖‖L−1
n ‖‖�n − Ln‖‖�−1

n ‖‖T ∗
n f ‖�C5e

−�5n. (21)

Combining (17) with estimates (18), (19), and (21) yields Theorem (2.8) (a).�
We note that Gröchenig recently introduced the concept intrinsically localized frames in

[9]; the advantage compared to the type of localization discussed in [8] that the definition
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is given directly in terms of the elements in the frame, i.e., no choice of an orthonormal
basis needs to be made. We expect results similar to Theorem2.8 to hold for intrinsically
localized frames, but it is not immediately clear how to modify the proof.

3. Frames for shift-invariant spaces

In this section we demonstrate that the proposed method can be used to compute numer-
ically dual frames for frames related to shift-invariant spaces. Throughout this section it is
more convenient to useZ rather thanN as index set for the frame elements. It is easy to see
that all results in Sections 1 and 2 can be reformulated for frames of the form{fk}k∈Z; we
simply replace all index sets of the type 1,2, ....n by−n, ....n.
Let us shortly recall the standard setup for shift-invariant spaces [1]. Let� ∈ L2(R) be

a continuous function for which the following conditions are satisfied:

• for someC > 0, s > 1,

|�(x)|�C(1+ |x|)−s . (22)

• {�(· − k)}k∈Z is a Riesz basis for its closed linear span,

H := span{�(· − k)}k∈Z =
{∑
k∈Z

ck�(· − k) | {ck} ∈ �2
}
. (23)

ThenH is a so-called reproducing kernelHilbert space, i.e., the point evaluationsf �→ f (x)

are continuous linear functionals onH, [15,4]. Thus, for eachx ∈ R, there existsKx ∈ H
such that

f (x) = 〈f,Kx〉. (24)

If {�k}k∈Z is a set of sampling forH, i.e., there exist constantsA,B > 0 such that

A‖f ‖2�
∑
k∈Z

|f (�k)|2�B‖f ‖2 ∀f ∈ H,

then{K�k }k∈Z is a frame forH. Our goal is to compute the dual frame{K̃�k }k∈Z.
Let� be the function whose Fourier transform is given by

�̂(�) = �̂(�)√∑
k∈Z |�̂(� + k)|2

; (25)

then{�(· − k)}k∈Z is an orthonormal basis forH, see[4,6]. Furthermore{�(· − k)}k∈Z

inherits the localization properties of{�(· − k)}k∈Z, which is an immediate consequence
of Lemma 3.1 in [8] (see also [13]) and the square-root theorem for Banach algebras [7].
Formula (25) provides an efficient and stable way to approximate� numerically, simply by
truncating the sum in (25) and carrying out the inverse Fourier transform by standard nu-
merical integration (e.g., by using an FFT applied to{�̂(k/N)}N/2k=−N/2 forN large enough).
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Using the orthonormal basis{�(· − k)}k∈Z for H, it is known [1] thatK�k can be written
as

K�k =
∑
n∈Z

�(�k − n)�(· − n). (26)

It follows fromparagraph3.3 in[8] that{K�k }k∈Z iss-localizedwith respect to{�(·−k)}k∈Z.
Let S denote the frame operator for{K�k }k∈Z. The dual frame is given bỹK�j =

S−1K�j , j ∈ Z; in order to apply Theorem 2.8 withf = K�j , we have to calculate

z := �−1
n T

∗
n K�j , i.e., to solve the equation

�nz = T ∗
n K�j . (27)

The entries of the matrix�n w.r.t. the choice of orthonormal basisek = �(· − k) are

〈Sm(n)ek, el〉 =
m(n)∑

j=−m(n)
〈ek,K�j 〉〈K�j , el〉 (28)

=
m(n)∑

j=−m(n)

〈
�(· − k),

∑
n∈Z

�(�j − n)�(· − n)
〉

×
〈∑
m∈Z

�(�j −m)�(· −m),�(· − l)
〉

=
m(n)∑

j=−m(n)
�(�j − k)�(�j − l), (29)

where we have used that〈�(· − k),�(· − l)〉 = �k,l . Via (24),

T ∗
n K�j = {〈K�j ,�(· − l)〉}l=m(n)l=−m(n)

=
{
�(�j − l)

}l=m(n)
l=−m(n) .

Now Eq. (27) can be solved by standard methods from linear algebra, such as conjugate
gradient type techniques. Theorem 2.8 implies that in this way we can approximate the dual
frame with an error that decreases polynomially forn → ∞.
Our approach also provides an answer to another computational issue, which appears in,

e.g., [1]:

Example 3.1. Let {�j }j∈Z be a set of sampling and assume that we want to reconstruct
f ∈ H from the samples{f (�j )}j∈Z. Here we can assume without loss of generality that
the functions{�(· − k)} that decay as in (22) and spanH as in (23) form an ONB instead
of a Riesz basis (otherwise we can always transform the Riesz basis into an ONB with the
same decay properties as described in (25)). Sincef can be written asf = ∑

k∈Z ck�(·−k)
we can reconstructf by computing the coefficient vectorc = {ck}k∈Z, which in turn can be
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calculated by solving the infinite-dimensional system of equations

Uc = {f (�j )}j∈Z, (30)

whereU is a biinfinite matrix with entries

Uj,k = �(�j − k), j, k ∈ Z. (31)

Of course in reality we cannot solve an infinite-dimensional system but we have to come up
with a finite-dimensional system instead. No statement is made in[1] about how to solve
(30) in practice; in fact the finite section method does in general not apply to (30) (see
Example 3.2 below). However, we now show that the finite section method applies to the
normal equations

U∗Uc = U∗{f (�j )}j∈Z. (32)

Note that

(U∗U)k,l =
∑
j∈Z

�(�j − k)�(�j − l), k, l ∈ Z; (33)

byacomputationas in (28)–(29) this shows thatU∗U coincideswith thecomplexconjugated
of the matrix{〈Sek, el〉}k,l∈Z. Thus if we approximateU∗U by the matrix{�k,l}nk,l=−n with
the entries in (29), we can indeed stably approximate the coefficients{ck}k∈Z and thus
numerically reconstructf with an approximation error governed by the decay rate of�.

Here is a concrete example where the finite section method does not apply to (30):

Example 3.2. Let � = (2− 4 |x|)	[−1/2,1/2]. Then{�(· − k)}k∈Z is a Riesz basis for its
closed span which is denoted byH. Furthermore, let�2j = 2j − 1,�2j−1 = 2j for j ∈ Z.
Then anyf ∈ H can be written asf = ∑

k∈Z ck�(· − k) for c = {ck}k∈Z ∈ �2(Z), in
particularf (�j ) = ∑

k∈Z ck�(�j − k) = c�j . Thus

∑
j∈Z

|f (�j )|2 =
∑
k∈Z

|c�j |2 =
∑
k∈Z

|ck|2, (34)

because{�j }j∈Z is just a reordering ofZ. By the Riesz basis condition this implies that
{�j }j∈Z is a set of sampling forH, hence theoretically any functionf ∈ H can be recon-
structed from its samples{f (�j )}j∈Z. Considering (30) with the matrixU in (31) we note
that the finite sectionmethod obviously does not work for the natural choice of orthonormal
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basis: in fact, the finite sectionsUn of the matrixU are of the form

U0 = �(�0 − 0) = 0, U1 =

 0 1 0
1 0 0
0 0 0


 , U2 =



0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0


 ,

U3 =




0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0



.

Hence none of theUn is invertible, althoughU is invertible, since it is just a permutation
matrix.
In contrast, the finite section method described in Example3.1 works very well in this

case (of course the following steps are not really necessary in this case, sinceU represents a
unitary operator): The family{�(·− k)}k∈Z can be transformed into an ONB{�(·− k)}k∈Z

where� has exponential decay (the statement about the decay is some kind of folklore
result, which is not stated explicitly in the literature; it follows by extending the results in
[13] toL2(R) or by combining Lemma 4.1 in [8] with the square root theorem for Banach
algebras [7]). Hence, by the derivations inExample 3.1 and byTheorem2.8 the finite section
method applies to the normal equations (32) with an exponential order of convergence.

4. The Casazza–Christensen method

As a final application of our results we now prove that they lead to an improvement of
the Casazza–Christensen method (cf. [3]) for approximation of the inverse frame operator
related to a general frame. We consider again a frame{fk}∞k=1 for a Hilbert spaceH, the
associated frame operator defined in (1), a sequence of subspaces ofH as in (3), and the
associated orthogonal projectionsPn.
A straightforward application of Theorem 1.10 in [10] shows that

(PnSPn)
−1Pnf → S−1f ∀f ∈ H.

However, in order to obtain a practically applicable result we have to replace the operators
PnSPn by operatorswhich only involve a finite number of the frameelements.Givenn ∈ N,
consider again the frame operatorSn associated to{fk}nk=1, see (8).Sn is invertible onHn,
but usuallyS−1

n Pnf does not converge toS−1f . Our purpose is to show that forn ∈ N we
can chosem(n) ∈ N such that

(PnSn+m(n)Pn)−1Pnf → S−1f asn → ∞ ∀f ∈ H. (35)
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The possibility of doing so is also proved in[3], but the method presented here leads to
considerably smaller values form(n), a very important issue as soon as the computational
effort is considered.

Theorem 4.1. ChooseR < A.Givenn ∈ N, choosem(n) ∈ N such that

∞∑
k=n+m(n)+1

|〈f, fk〉|2�R‖f ‖2 ∀f ∈ Hn.

Then{PnSn+m(n)Pn}∞n=1 is applicable;in particular, (35)holds.

Proof. Regardless of the choice ofm(n)�0 the sequence{PnSn+m(n)Pn}∞n=1 is an approx-
imation method forS. Now

PnSn+m(n)Pn = PnSPn + Pn(Sn+m(n) − S)Pn;
thus we can consider{PnSn+m(n)Pn}∞n=1 as a perturbation of the stable approximation
method{PnSPn}∞n=1. For alln ∈ N,∥∥Pn(Sn+m(n) − S)Pn∥∥ = sup

‖f ‖=1,f∈Hn

|〈Pn(Sn+m(n) − S)Pnf, f 〉|

= sup
‖f ‖=1,f∈Hn

∞∑
k=n+m(n)+1

|〈f, fk〉|2

� R

< A.

By Lemma2.1 we have‖(PnSPn)−1‖�1/A for all n, so it follows that

sup
n

∥∥Pn(Sn+m(n) − S)Pn∥∥ � inf
n

∥∥∥(PnSPn)−1
∥∥∥−1

.

By Lemma1.3 we conclude that(PnSn+m(n)Pn) is applicable. �
Compared to the result by Casazza/Christensen [3], the advantage of Theorem 4.1 is

that R can be chosen as any constant smaller thanA: in [3] a similar result was ob-
tained, but withR was depending onn, and forced to tend to zero forn → ∞. This,
in turn, implies thatm(n) is forced to be unnecessarily large, and thereby complicate the
computations.

Final remark. All results for approximatingS−1 can be extended to approximatingS− 1
2 ,

for instance by proceeding along similar lines as in Theorem 8.1.4 of [5]. This extension

is useful when one wants to numerically compute tight frames of the form{S− 1
2fk}∞k=1.

Furthermore, using the results in [2] one can easily extend the results in this paper to
frames whose localization is characterized by decay other than polynomial or exponential
decay.
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